

Challenges & Opportunities For Comorbid Major Depressive Disorder (MDD) & Substance Use Disorder (SUD)

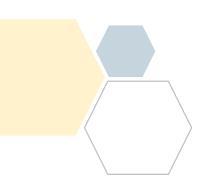
January 2020 MRC2.PSY.D.00071

This program is paid for by Otsuka Pharmaceutical Development & Commercialization, Inc. and Lundbeck, LLC.

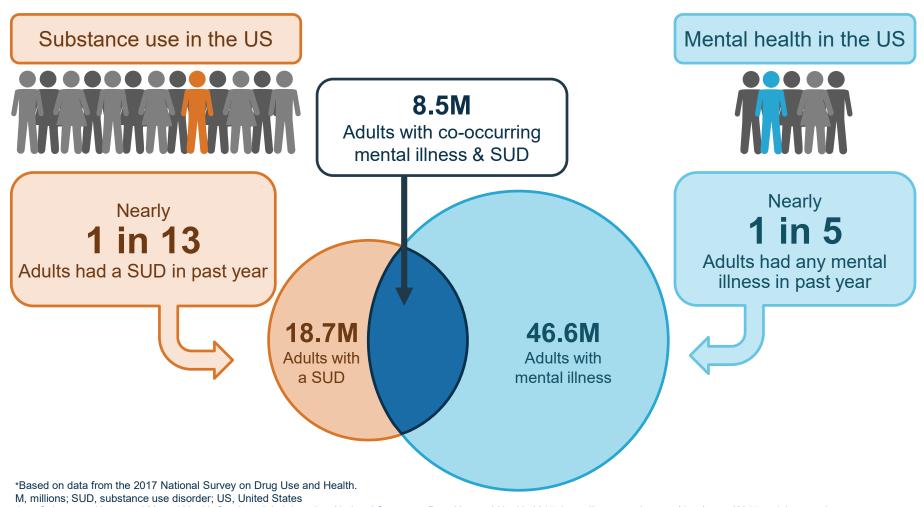
Speakers are paid consultants for Otsuka Pharmaceutical Development & Commercialization, Inc.

Objectives

Polling Question


In your clinical opinion, which of the following substances of abuse have most widely impacted your community and practice?

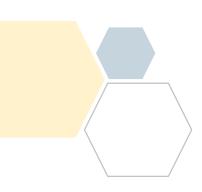
- A. Opiates (heroin/prescription)
- B. Cocaine or crack
- C. Alcohol
- D. Methamphetamine
- E. Cannabis
- F. Other



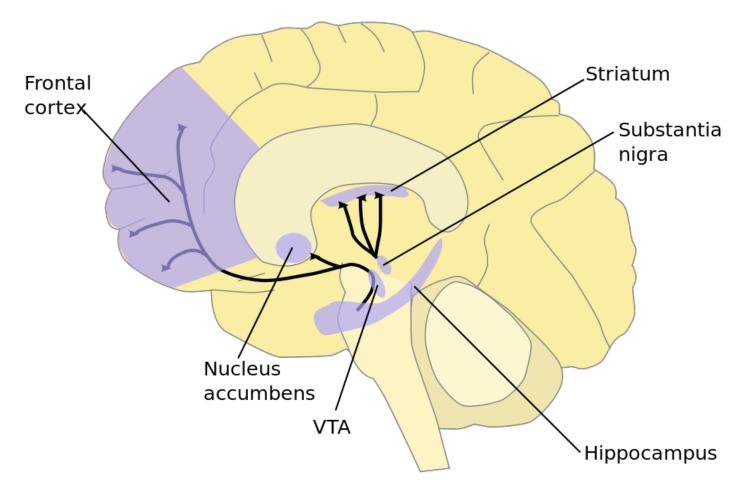
Statistics

Co-occurring Mental Illness & SUDs:

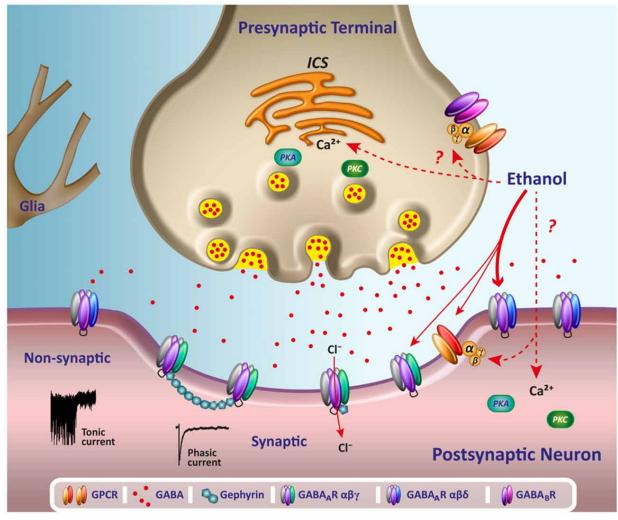
Prevalence*



Substance Abuse and Mental Health Services Administration. National Survey on Drug Use and Health 2017. https://www.samhsa.gov/data/report/2017-nsduh-annual-national-report. September 2018. Accessed March 14, 2019.

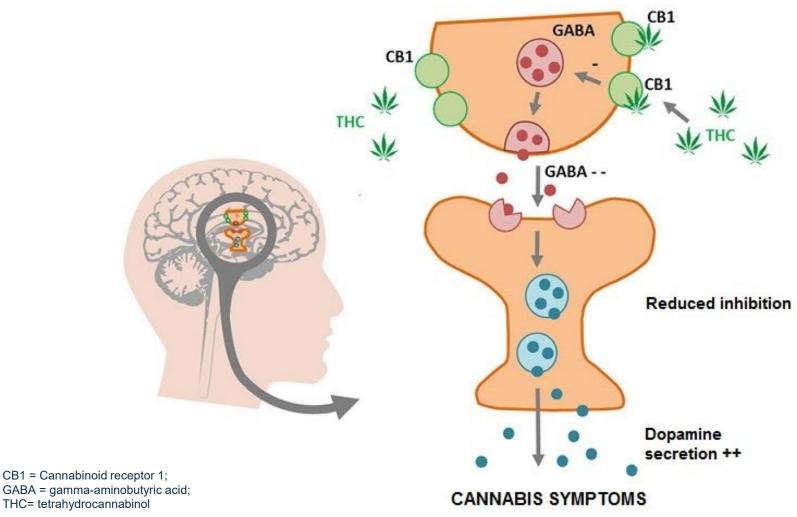


Impact of Drugs of Abuse on Neurobiological Pathways


Neurobiological Pathway Overlap for Substance Use Disorder (SUD)

https://upload.wikimedia.org/wikipedia/commons/d/de/Dopamine_pathways.svg

Alcohol Neurobiology



ICS= intracellular calcium stores; Ca^{2+} = calcium ions; Cl= chloride ions; PKA = protein kinase A; PKC = protein kinase C; GPCR = G-protein coupled receptor; GABA = gamma-aminobutyric acid; $GABA_AR$ = GABA A receptor and subtypes

Forestera et al Front Cell Neuro 2016. 10 (114): 1-17.

Cannabis Neurobiology

https://thealevelbiologist.co.uk/genetics-control-homestasis/the-nervous-system-and-the-identification-and-consequences-of-damage/ C

THC and CBD in Depression

The cannabis plant is composed of many chemical compounds, including THC and CBD¹

5-HT1A, serotonin 1A; CB1, cannabinoid type 1; CBD, cannabidiol; CNS, central nervous system; THC, delta-9-tetrahydrocannabinol.

1. de Mello Schier AR et al. CNS Neurol Disord Drug Targets. 2014;13(6):953-60.

2. Zou S et al. Int J Mol Sci. 2018;19(3). doi: 10.3390/ijms19030833.

THC and CBD in Depression

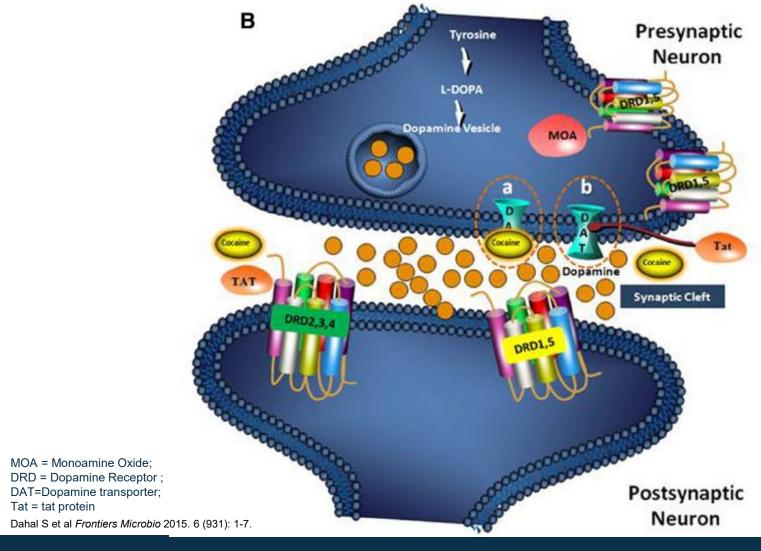
The cannabis plant is composed of many chemical compounds, including THC and CBD¹

THOM

CBD

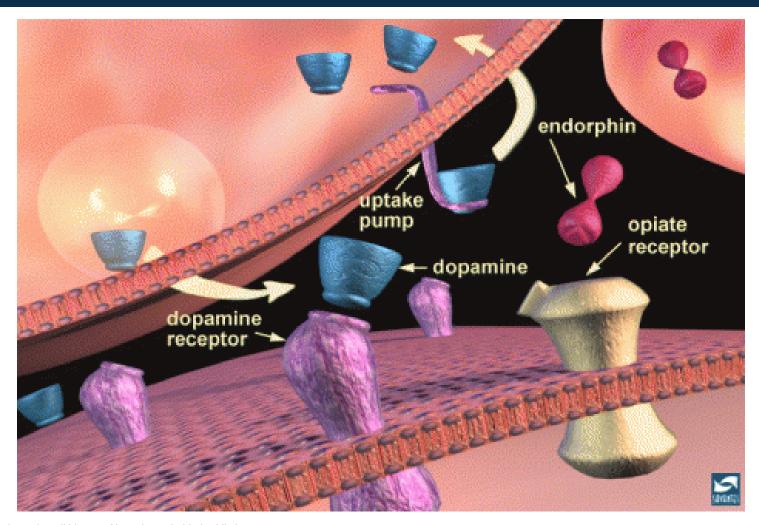
- Interacts with the endocannabinoid system to modulate mood¹
- Binds with high affinity to CB1 receptors in the CNS²
- A major active chemical component of cannabis¹
 - Can produce psychoactive and hallucinogenic effects¹
- The therapeutic use of THC is limited²

- Interacts with the endocannabinoid system and activates 5-HT1A receptors in the CNS^{1,2}
- Binds with low affinity at CB1 receptors²
- Can produce anxiolytic and antidepressant therapeutic effects¹
- CBD is non-hallucinogenic¹
- The therapeutic use of CBD for depression is being explored¹


5-HT1A, serotonin 1A; CB1, cannabinoid type 1; CBD, cannabidiol; CNS, central nervous system; THC, delta-9-tetrahydrocannabinol.

1. de Mello Schier AR et al. CNS Neurol Disord Drug Targets. 2014;13(6):953-60.

2. Zou S et al. Int J Mol Sci. 2018;19(3). doi: 10.3390/ijms19030833.



Cocaine Neurobiology

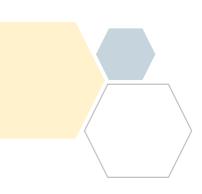
Opiate Neurobiological Pathways

http://addictionandgenetics.wikidot.com/the-science-behind-addiction

Impact of Drugs of Abuse on MDD Symptoms

Drug	Mechanism of Action	Impact on MDD Symptoms
Alcohol	 Increases DA receptor activation of the reward pathway in the NAc, leading to a decrease in DA levels with chronic use¹ May increase the risk of MDD via reduced MTHFR production² 	 Alcohol-use disorder increases the risk of MDD² Alcoholism can be associated with social, psychological, and physical problems that may contribute to the development of depressive disorders³
Cannabis	 Cannabinoids interact with CB1 receptors in the eCB system and can influence emotional regulation and reward processing⁴ 	 Short-term use can reduce perceived symptoms of negative affect; however, continued use may exacerbate baseline symptoms of depression⁵
Cocaine	 Acts as a DA, NE, and 5-HT reuptake inhibitor and increases synaptic DA levels in the VTA-NAc reward pathway⁶ Changes in inflammatory gene expression may be associated with anhedonia in CUD⁷ 	 Acute ingestion is associated with temporary euphoria and hyperactivity⁶ Heavy use of stimulants like cocaine is associate with higher rates and severity of depressive symptoms, including anhedonia⁸
Opiates	 Act at mu, delta, and kappa receptors in the VTA-NAc reward pathway, and cessation of use may lead to low baseline receptor activity⁹ 	 Occasional use temporarily relieves MDD symptoms such as anxiety, pain, and insomnia¹⁰ Long-term use may increase the risk of incident, recurrent, and treatment-resistant depression¹⁰

5-HT, serotonin; CB1, cannabinoid type 1; CUD, cocaine use disorder; DA, dopamine; eCB, endocannabinoid; GABA, gamma-aminobutyric acid; MDD, major depressive disorder; MTHFR, methylenetetrahydrofolate reductase; NAc, nucleus accumbens; NE, norepinephrine; THC, delta-9-tetrahydrocannabinol; VTA, ventral tegmental area.


- 1. Hirth N et al. Proc Natl Acad Sci U S A. 2016;113:3024-9.
- 2. Boden JM and Fergusson DM. Addiction. 2011;106:906-14.
- 3. Trevisan LA et al. Alcohol Health Res World, 1998:22:61-6.
- 4. Lucatch AM et al. Curr Addict Rep. 2018;5:336-45.
- 5. Cuttler C et al. J Affect Disord. 2018;235:198-205.

- 6. Korpi ER et al. *Pharmacol Rev.* 2015;67:872-1004.
- 7. Fries GR et al. PLOS ONE. 2018:13:e0207231.
- 8. Leventhal AM et al. Exp Clin Psychopharmacol. 2010;18:562-9.
- 9. Semenkovich K et al. Mo Med. 2014;111:148-54.
- 10. Sullivan MD. Clin J Pain. 2018;34:878-84

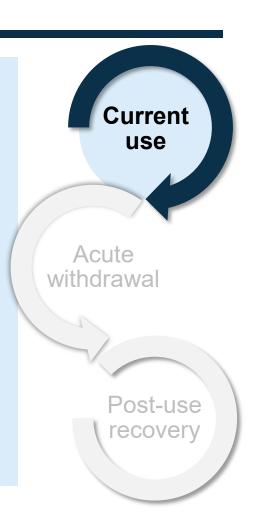
Treatment Challenges and Opportunities

SUD Recovery and Impacts on Treatment for MDD

Alcohol

 May interact with treatment; a period of abstinence may be necessary before evaluating depression¹

Cannabis


 Combined CBT and pharmacological interventions may be a promising approach to treat depression among occasional cannabis users²

Cocaine

MAOIs are contraindicated in the presence of stimulants³

Opiates

 Certain antidepressants may increase the effects of opiates³

CBT, cognitive behavioral therapy; MAOI, monoamine oxidase inhibitor; MDD, major depressive disorder; SUD, substance use disorder.

- DeVido JJ and Weiss RJ. Curr Psychiatry Rep. 2012;14:610-8.
- Bricker LB et al. Depress Anxiety. 2007;24:392-8.
- 3. Tirado-Munoz J et al. Adicciones. 2018:30:66-76.

SUD Recovery and Impacts on Treatment for MDD

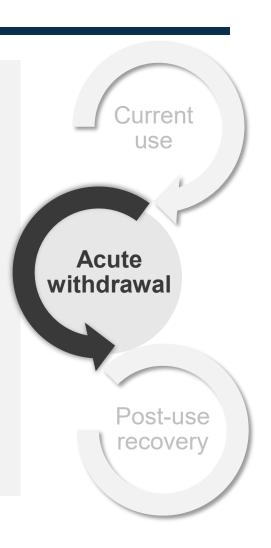
Alcohol

- Treating medically complicated withdrawal may be prioritized until a patient is stable¹
 - However, it has been suggested to treat SUD and MDD concurrently, even during acute episodes of either condition²

Cannabis

 In subjects with cannabis dependence and MDD, common withdrawal symptoms include depression, anxiety, craving, and irritability³

Cocaine


 Certain antidepressants have stimulant properties and are at risk for abuse²

Opiates

Certain TCAs may induce delirium during opioid withdrawal²

MDD, major depressive disorder; SUD, substance use disorder; TCA, tricyclic antidepressant.

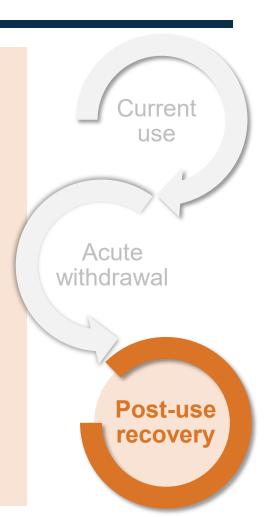
- DeVido JJ and Weiss RJ. Curr Psychiatry Rep. 2012;14:610-8.
- Tirado-Munoz J et al. Adicciones. 2018:30:66-76.
- Cornelius JR et al. Addict Behav. 2008;33:1500-5.

SUD Recovery and Impacts on Treatment for MDD

Alcohol

 If medication is not continued post-inpatient treatment, there can be a high risk of alcohol abuse relapse1

Cannabis


 Withdrawal symptoms have been associated with rapid relapse in subjects with cannabis dependence and MDD²

Cocaine

 Loss of control over cocaine cravings can lead to depression and anxiety³

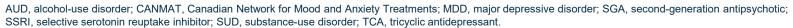
Opiates

 In certain depressed subjects on maintenance medication for opioid dependence, SSRIs can significantly ameliorate depression and decrease drug use⁴

MDD, major depressive disorder; SSRI, serotonin selective reuptake inhibitors; SUD, substance use disorder.

- DeVido JJ and Weiss RJ. Curr Psychiatry Rep. 2012;14:610-8.
- Cornelius JR et al. Addict Behav 2008;33:1500-5.

- DiGirolamo GJ et al. J Dual Diagn.2017;13:298-304.
- Quello BS et al. Sci Pract Perspect. 2005;3:13-21.



Treatment Considerations for Comorbid MDD and SUD

- MDD and SUD can be treated concurrently¹
- Underlying causes of MDD (primary or induced) should be considered¹
- Psychotherapy in addition to pharmacotherapy could be used¹
- Pharmacological treatment options should consider an agent's efficacy, safety, interactions, and abuse potential¹

The CANMAT evidence-based recommendations for the treatment of SUD and MDD²

- **For alcohol**: Antidepressant; add-on opioid antagonist (or alone); add-on opioid antagonist to SSRI
- For cocaine: SGA as an add-on or alone
- For opiate: TCA add-on to opioid agonist for withdrawal
- For cannabis: No recommendations

- 1. Tirado-Munoz J et al. Adicciones. 2018;30(1):66-76.
- 2. Beaulieu S et al. Ann Clin Psychiatry. 2012;24(1):38-55.

Challenges and Opportunities for Comorbid Major Depressive Disorder (MDD) and Substance Use Disorder (SUD)

January 2020 MRC2.PSY.D.00071