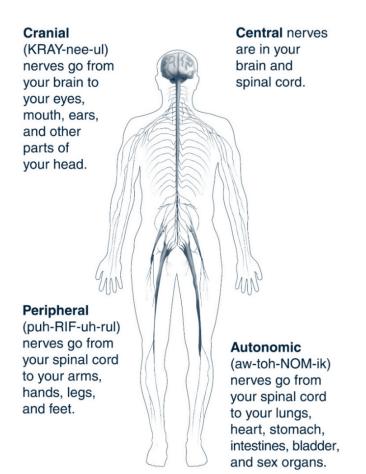


Basics in Psychopharmacology

© 2020 Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, MD Lundbeck, LLC.

May 2020 MRC2.PSY.D.00078

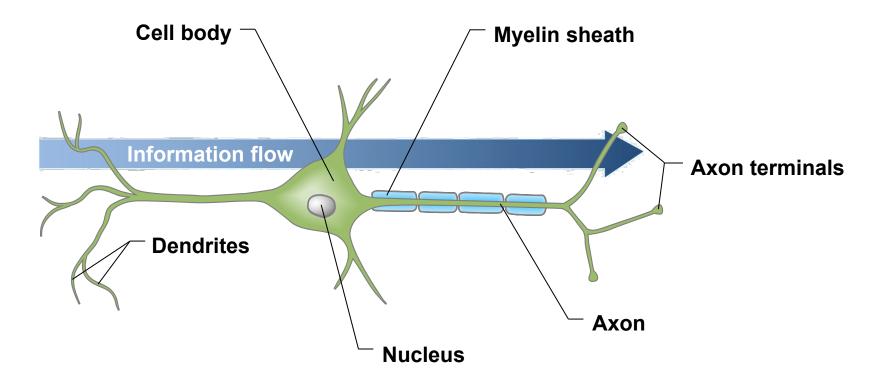
This program is paid for by Otsuka Pharmaceutical Development & Commercialization, Inc. and Lundbeck, LLC.


Speakers are paid consultants for Otsuka Pharmaceutical Development & Commercialization, Inc.

Organization of the Nervous System

The central nervous system (CNS; brain, spinal cord) and peripheral nervous system (PNS) are composed of two main types of neural cells¹:

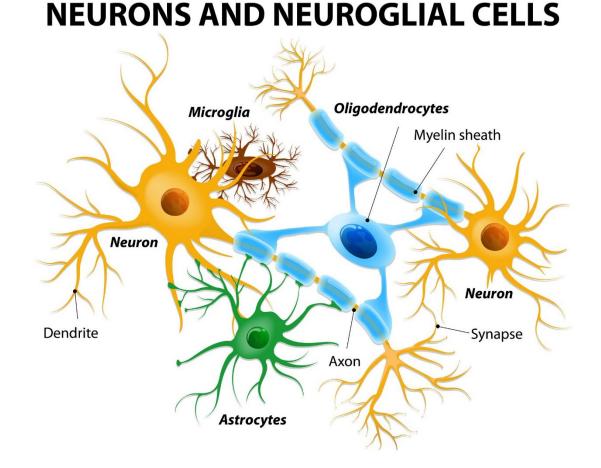
- Neurons¹
- Glial cells^{1,2}



- 1. Tortora GJ, Derrickson B. Principles of Anatomy and Physiology. 12th edition. John Wiley & Sons; 2009.
- 2. Kandel ER, Schwartz JH, Jessell TM (eds). Principles of Neural Science. 4th edition. McGraw-Hill; 2000.
- 3. Drawing of the nervous system showing the four types of nerves with descriptions labeled for each type (Image number N00165). In: Prevent diabetes problem: Keep your nervous system healthy (DM-208). National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Website. Available at: https://www.niddk.nih.gov/health-information/diabetes/preventing-diabetes-problems/nerve-damage-diabetic-neuropathies. Accessed 28 July 2016.

Image from: NIDDK Image Library³

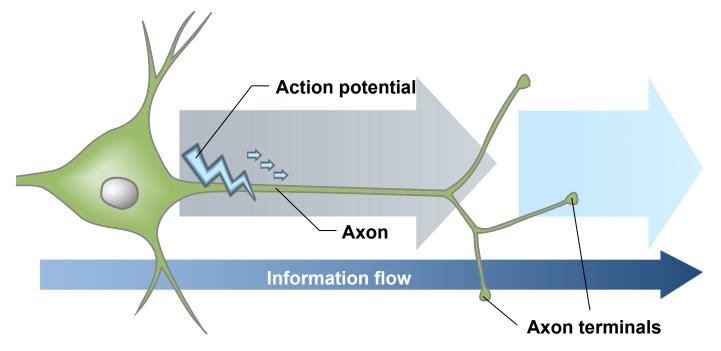
Anatomy of a Neuron^{1–3}


Neurotransmitters: chemicals in the nervous system that transmit nerve impulses between neurons³

Action potential: in neurophysiology, an electrical charge that moves through an axon³

- 1. Kandel ER, Schwartz JH, Jessell TM (eds). Principles of Neural Science. 4th edition. McGraw-Hill; 2000.
- 2. Tortora GJ, Derrickson B. Principles of Anatomy and Physiology. 12th edition. John Wiley & Sons; 2009.
- 3. Oxford Concise Medical Dictionary. 9th edition. Oxford University Press; 2015.

Various Types of Glia Cells in the Brain^{1,2}


- 1. Purves D, Augustine GJ, Fitzpatrick D, et al (eds). Neuroscience. 3rd edition. Sinauer Associates; 2004.
- 2. Tortora GJ, Derrickson B. Principles of Anatomy and Physiology. 12th edition. John Wiley & Sons; 2009.

Process of Electrical Neurotransmission^{1–3}

Information moves through the nervous system via two integrated forms of communication

- Electrical neurotransmission through action potentials (shown here)
- Chemical neurotransmission (detailed next)

- 1. Tortora GJ, Derrickson B. Principles of Anatomy and Physiology. 12th edition. John Wiley & Sons; 2009.
- 2. Purves D, Augustine GJ, Fitzpatrick D, et al (eds). Neuroscience. 3rd edition. Sinauer Associates; 2004.
- 3. Kandel ER, Schwartz JH, Jessell TM (eds). Principles of Neural Science. 4th edition. McGraw-Hill; 2000.

Process of Chemical Neurotransmission^{1,2}

Action potential

- 2 Neurotransmitters released
- 3 Neurotransmitters bind
- 4 Signal transduction
- 5 Neurotransmitters cleared

Receptor: a protein molecule on a cell membrane that binds to a specific chemical, such as a neurotransmitter or drug, and produces a specific physiological effect.³

Reuptake: a mechanism by which a neurotransmitter is taken back into the axon terminal that released it; the most common mechanism for removal and inactivation of neurotransmitters.²

Diffusion: in regard to neurotransmission, a mechanism by which neurotransmitters drift out of the synaptic cleft.²

- 1. Purves D, Augustine GJ, Fitzpatrick D, et al (eds). Neuroscience. 3rd edition. Sinauer Associates; 2004.
- 2. Tortora GJ, Derrickson B. Principles of Anatomy and Physiology. 12th edition. John Wiley & Sons; 2009.
- 3. Oxford Concise Medical Dictionary. 9th edition. Oxford University Press; 2015.

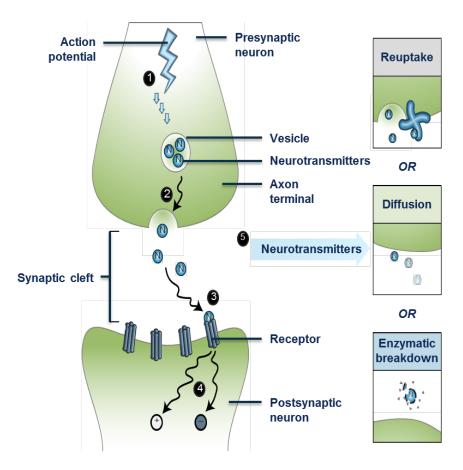


Image adapted from: Purves D, et al. 20041

Neurotransmitters and Receptors*

Neurotransmitter receptor subtypes	
Neurotransmitter	Receptor subtypes
Dopamine ¹	Dopaminergic receptors (D ₁₋₅ subtypes)
Serotonin ²	5-HT receptors (5-HT _{1A-B} , 5-HT _{1D-F} , 5-HT _{2A-C} , 5-HT ₃₋₇ subtypes)
Noradrenaline ^{1,3}	α-adrenergic receptors ($\alpha_{1A, B, D}$, α_{2A-C} subtypes) β-adrenergic receptors (β_{1-3} subtypes)
Glutamate ^{1,4}	Ionotropic receptors: non-NMDA (AMPA, kainate), NMDA receptors Metabotropic receptors (mGluRs)
GABA ¹	GABA _A , GABA _B , and GABA _C receptors
Acetylcholine ¹	Cholinergic receptors: muscarinic receptors (M ₁₋₅ subtypes), nicotinic receptors
Histamine ¹	Histaminic receptors (H ₁₋₃ subtypes)

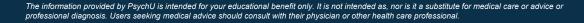
5-HT, serotonin; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; D, dopamine; GABA, gamma-aminobutyric acid; H, histamine; M, muscarinic; mGluRs, metabotropic glutamate receptors; NMDA, N-methyl-D-aspartate. *Common targets for drugs; will be discussed in further detail in disease-specific modules.

1. Stahl SM. Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications. 4th edition. Cambridge University Press; 2013.

2. Polter AM, et al. Front Mol Neurosci. 2011;4:31.

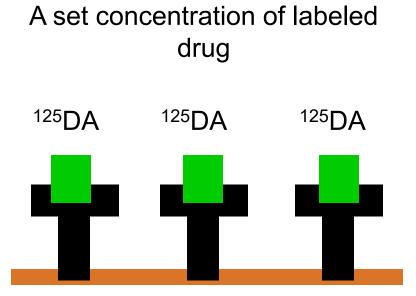
3. Quaglia W, et al. *Expert Opin Ther Pat.* 2011;21(4):455-81.

4. Purves D, Augustine GJ, Fitzpatrick D, et al (eds). Neuroscience. 3rd edition. Sinauer Associates; 2004.

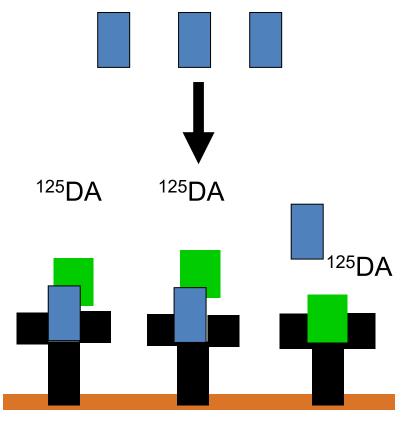

Principles of Receptor Pharmacology

- Affinity:
 - How strongly does a molecule or drug bind to a specific receptor?^{1,2}
 - Typically discussed as high, moderate, or low based on Ki values (nM)³
- Intrinsic activity^{1,2}:
 - Once bound, what is the effect of the drug at the specific receptor?
 - Determined by ability of molecule/drug to either stimulate a specific receptor (ie, an agonist) or inhibit an agonist from stimulating that receptor (ie, an antagonist)
- Receptor occupancy¹:
 - How many receptors are bound to by a molecule or drug at a particular dosage (% of receptors bound)?*

*More detail in section 201


Ki, inhibitory constant; nM, nanomolar.

- 1. Hardman JG, Limbird LE (eds). Goodman & Gilman's The Pharmacological Basis of Therapeutics. 10th edition. McGraw-Hill; 2001;36-40.
- 2. Tamminga CA. J Neural Transm. 2002;109:411-420.
- 3. Inoue A, Nakata Y. Jpn J Pharmacol. 2001;86:376-380.

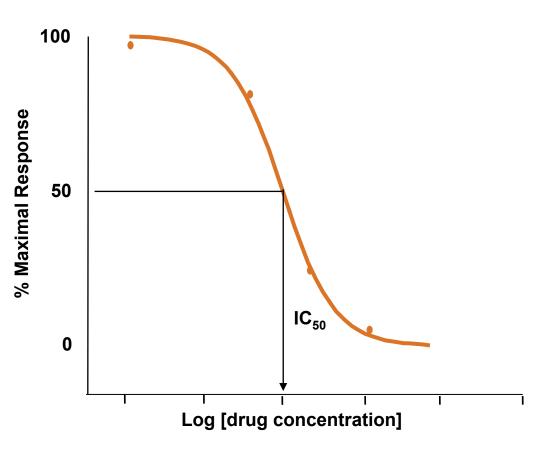


Inhibition Constant, K_i — How is it determined?^{1,2}

 K_i is the concentration of competing ligand in a competition assay which would occupy 50% of the receptors if no radioligand were present.

+ varying concentrations unlabeled competitor (eg, molecule of interest)

1. Blass BE, et al (eds). *Basic Principles in Drug Discovery and Development*. 1st edition. Elsevier; 2015; 146-202.

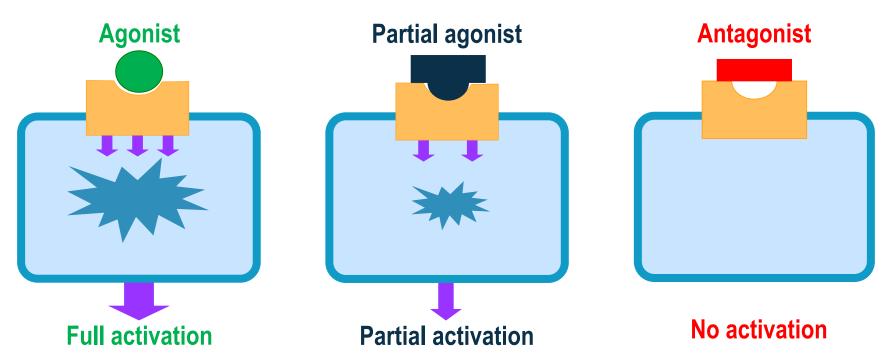

2. Kenakin, T. *Pharmacologic Analysis of Drug-Receptor Interaction*. 2nd edition. Raven Press; 1993; 385-410.

PSYCHU[®]

Concepts of Receptor Pharmacology — Binding Affinity

Affinity of drug at a receptor

- Strength of binding between a ligand (molecule or drug) and its target receptor¹
- Competitive binding experiments are used to investigate drug binding properties and affinities
 - Typically categorized as high, moderate, or low binding based on K_i value (nM), the lower the K_i, the higher the binding affinity


IC₅₀, the concentration of a drug that is required for 50% inhibition in vitro; nM, nanoMolars (unit of quantity/concentration of a drug/molecule).

1. Motulsky HJ, Neubig RR. Curr Protoc Neurosci. 2010; Chapter 7: Unit 7.5.

Concepts of Receptor Pharmacology — Intrinsic Activity

Intrinsic activity of drug at a receptor

- The physiologic effect a ligand elicits once bound to its receptor
- Ligand can partially or fully stimulate (agonism) or inhibit (antagonism) receptor activity

Hardman JG, Limbird LE (eds). Goodman & Gilman's The Pharmacological Basis of Therapeutics. 10th edition. McGraw-Hill; 2001 pp36-40.

Summary

- The nervous system is organized into two main anatomical divisions: the CNS and the PNS¹
- Neurons are the basic nerve cells, which transmit messages throughout the nervous system¹
- Glia cells help support and protect neurons (see section 201)²
- Neurons communicate with each other via transmission (electrical and chemical)^{2,3}
- Neurotransmitters are hypothesized to directly regulate human physiology and behaviour through neuronal communication¹
- These neurotransmitter signals are the pharmacologic targets of medications (see section 201)³
- The pharmacological profile of a neurotransmitter (or receptor drug targets) can be described by binding affinity and intrinsic activity⁴

- 2. Kandel ER, Schwartz JH, Jessell TM (eds). *Principles of Neural Science*. 4th edition. McGraw-Hill; 2000.
- 3. Purves D, Augustine GJ, Fitzpatrick D, et al (eds). *Neuroscience*. 3rd edition. Sinauer Associates; 2004.
- 4. Brunton LL (ed). Goodman & Gilman's The Pharmacological Basis of Therapeutics. 12th edition. McGraw-Hill; 2011; 41–72.

^{1.} Tortora GJ, Derrickson B. Principles of Anatomy and Physiology. 12th edition. John Wiley & Sons; 2009.

Basics in Psychopharmacology

© 2020 Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, MD Lundbeck, LLC.

May 2020 MRC2.PSY.D.00078