

Plasma Concentrations, Pharmacokinetics, and Their Clinical Relevance

© 2023 Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, MD Lundbeck, LLC.

March 2023 US.PSY.D.23.00003

This program is paid for by Otsuka Pharmaceutical Development & Commercialization, Inc. and Lundbeck, LLC.

Speakers are paid consultants and/or employees of Otsuka Pharmaceutical Development & Commercialization, Inc.

Understanding Pharmacokinetics is Important for Determining an Effective and Safe Treatment Plan

Provide an Overview of Pharmacokinetics (PK) and Pharmacodynamics (PD)

Describe the Differences in PK and Plasma Concentrations of Different Medication Formulations

> Oral and Long-Acting Injectable (LAI)

Explain the Importance of PK and Plasma Concentrations in the Clinical Setting

Mayor S. Prescriber. 2017:28(3):45-48.

3

Pharmacokinetics vs Pharmacodynamics

Pharmacokinetics

- Study of how the drug is processed by the body^{1,2}
 - Absorption
 - Distribution
 - Metabolism
 - Elimination

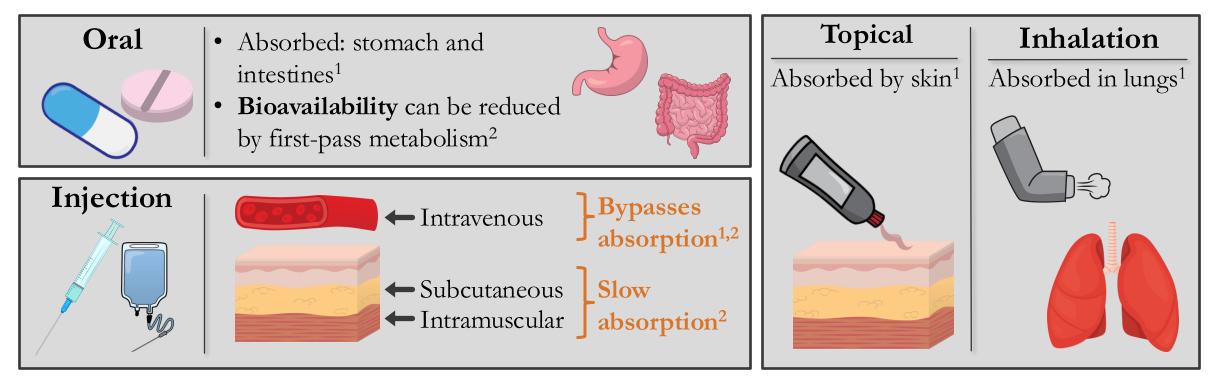
4

"What the body does to the drug"^{1,3}

Pharmacodynamics

- Study of therapeutic effects of the drug on the body⁴
 - Relationship of drug concentration and drug response^{4,5}
 - Drug action impacts therapeutic response and toxic effects^{3,4}

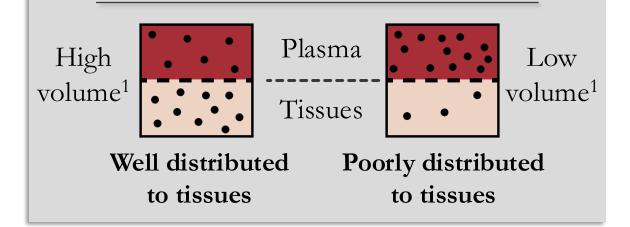
"What the drug does to the body"^{3,5}


Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 2. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 3. Newell DR. Ann Oncol. 1994;5 Suppl 4:9-15. 4. Jones AW. WIREs Forensic Sci. 2019;1(5):e1340.
 Currie GM. J Nucl Med Technol. 2018;46(2):81-86.

Pharmacokinetics: Absorption

Drug is transported from site of drug administration to systemic circulation^{1,2}

- Bioavailability: percentage of administered drug that reaches site of action²
- Common routes of administration:



1. Alavijeh MS, et al. NeuroRx. 2005;2(4):554-571. 2. Currie GM. J Nucl Med Technol. 2018;46(3):221-230.

Pharmacokinetics: Distribution

Volume of distribution (VD)

- Describes the extent of distribution between plasma and tissues¹
- Amount of drug in the body divided by drug plasma concentration^{1,2}

Factors impacting VD

- Blood flow to tissue¹
- Compartments (multiple tissues)^{1,2}
- Plasma protein bound¹
- Blood-brain barrier^{1,3}

1. Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 2. Alavijeh MS, et al. NeuroRx. 2005;2(4):554-571. 3. Banks WA. BMC Neurol. 2009;9:S3.

Pharmacokinetics: Metabolism

Drug structure is modified to facilitate elimination from body^{1,2}

• Mostly done by enzymes in the liver (primarily cytochrome P450)^{2,3}

Phases of metabolism¹

- **Reactions:** oxidation, reduction, and hydrolysis
- Possible outcomes:

Phase

U

Phase

7

- Active drug is inactivated
- Inactive drug form (prodrug) is activated
- **Reactions:** conjugation and hydrolysis
- Primary outcome:
 - Attachment of a molecule to the drug that enables elimination

First-pass metabolism¹

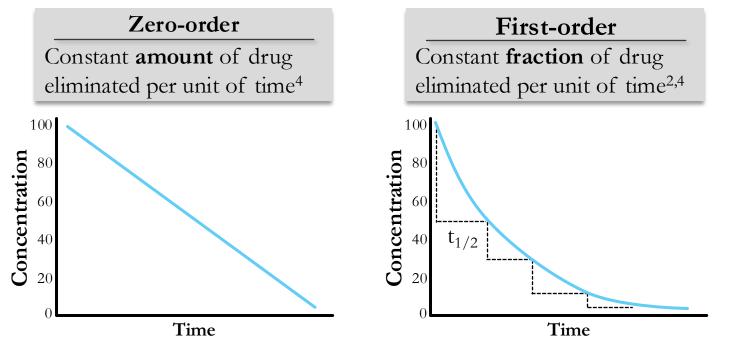
- Drug metabolism that occurs before drug reaches systemic circulation
- Lowers bioavailability
- Common for oral drugs

Factors impacting drug response

- Genetics^{2,3}
- Age^{1,4,5}
- Sex^{2,5}
- Drug,³ diet,⁶ and lifestyle⁶ interactions
- Disease impacting organ function⁷

Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 2. Alavijeh MS, et al. NeuroRx. 2005;2(4):554-571. 3. Lynch T, et al. Am Fam Physician. 2007;76(3):391-396. 4. Mangoni AA, et al. Br J Clin Pharmacol. 2004;57(1):6-14.
 Alomar MJ. Saudi Pharm J. 2014;22(2):83-94. 6. Niederberger E, et al. Int J Mol Sci. 2021;22(14):7692. 7. Staudinger JL. Pharm Res. 2013;30(9):2171-2173.

The information provided by PsychU is intended for your educational benefit only. It is not intended as, nor is it a substitute for medical care or advice or


professional diagnosis. Users seeking medical advice should consult with their physician or other health care professional.

Pharmacokinetics: Elimination

Drugs are irreversibly removed from the body^{1,2}

- Kidney filtration (urine) is the primary method^{2,3}
- Elimination kinetics can be either zero- or first-order²
 - Most drugs are eliminated following first-order kinetics¹

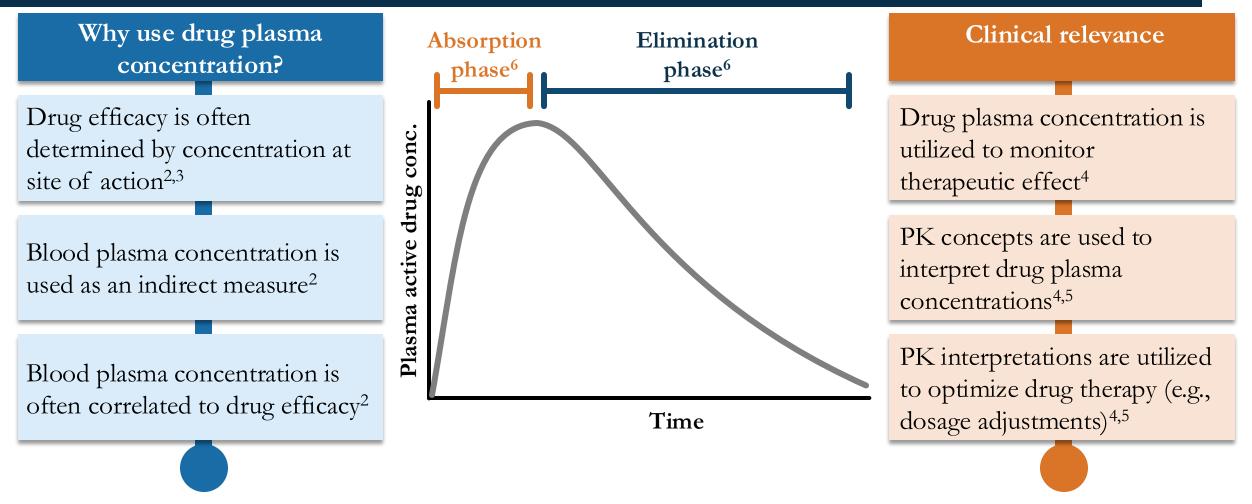
Elimination half-life $(t_{1/2})$

Time it takes for 50% of drug to be eliminated⁵

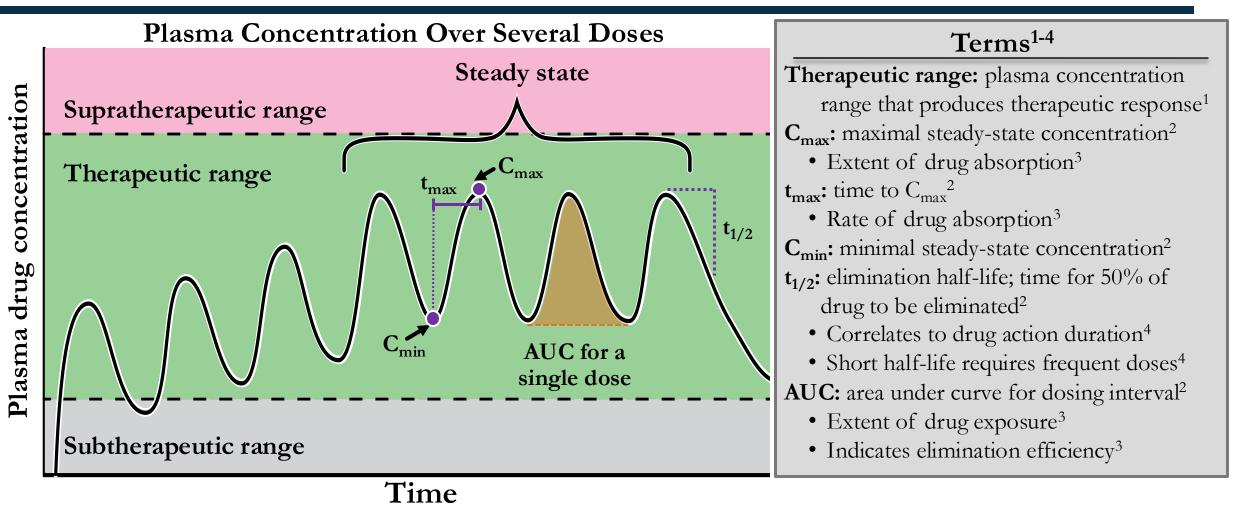
Clinical relevance

- Values are used for^{5,6}:
 - Estimating time to establish steady state
 - Estimating time to eliminate all of the drug

Jambhekar SS, et al. 1st ed. Pharmaceutical Press; 2009. 2. Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 3. Alavijeh MS, et al. NeuroRx. 2005;2(4):554-571.
 Jones AW. WIREs Forensic Sci. 2019;1(5):e1340. 5. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 6. Andrade C. J Clin Psychiatry. 2022;83(4):22f14584.



Pathway of Pharmacokinetics

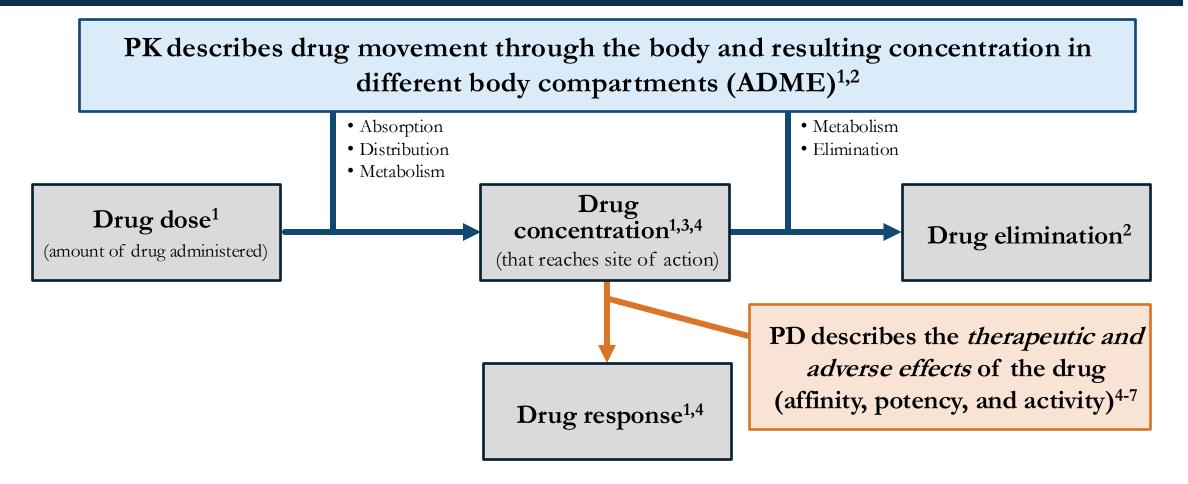

PK Data is Often Viewed as Drug Plasma Concentration Over Time¹

Jones AW. WIREs Forensic Sci. 2019;1(5):e1340. 2. Rizk ML, et al. Clin Transl Sci. 2017;10(3):133-142. 3. Currie GM. J Nucl Med Technol. 2018;46(2):81-86. 4. Kang JS, et al. Korean J Intern Med. 2009;24(1):1-10.
 Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 6. Jambhekar SS, et al. 1st ed. Pharmaceutical Press; 2009.

Understanding Pharmacokinetic Parameters

1. Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 2. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 3. Urso R, et al. Eur Rev Med Pharmacol Sci. 2002;6(2-3):33-44. 4. Andrade C. J Clin Psychiatry. 2022;83(4):22f14584.

Pharmacodynamics (PD)


Drug action that is responsible for therapeutic response and toxic effects^{1,2}

Action occurs when drug binds	Drug action is determined by:	
to receptors ³⁻⁵	Affinity	Potency
$\begin{array}{c} Drug \\ \hline \\ Cell \\ membrane \end{array} \\ \begin{array}{c} Cell \\ fightherefore \\ fightherefor$	 Strength of drug binding to specific receptor^{3,5} High affinity typically requires lower dose³ 	 Relationship between drug dose and magnitude of the effect³ High potency requires a low dose to produce a strong effect³
	 Efficacy (intrinsic activity) Effect on receptor activity that leads to change in cellular activity^{4,5} Relative measurement of ability to produce a response^{4,5} 	 Clinical relevance Therapeutic effect is determined by concentration at site of action⁶ Drug affinity, potency, and efficacy help determine required dose³

Newell DR. Ann Oncol. 1994;5 Suppl 4:9-15. 2. Jones AW. WIREs Forensic Sci. 2019;1(5):e1340. 3. Currie GM. J Nucl Med Technol. 2018;46(2):81-86. 4. Berg KA, et al. Int J Neuropsychopharmacol. 2018;21(10):962-977.
 Salahudeen MS, et al. Saudi Pharm J. 2017;25(2):165-175. 6. Rizk ML, et al. Clin Transl Sci. 2017;10(3):133-142.

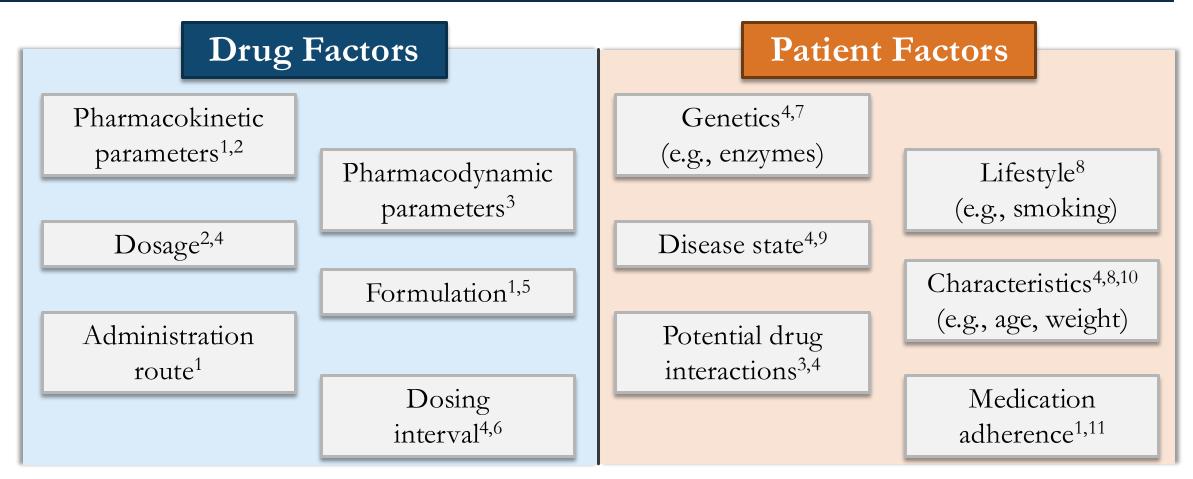
Connection Between PK and PD

Negus SS, et al. Curr Top Behav Neurosci. 2018;39:245-259. 2. Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 3. Rizk ML, et al. Clin Transl Sci. 2017;10(3):133-142.
 Salahudeen MS, et al. Saudi Pharm J. 2017;25(2):165-175. 5. Jones AW. WIREs Forensic Sci. 2019;1(5):e1340. 6. Newell DR. Ann Oncol. 1994;5 Suppl 4:9-15. 7. Currie GM. J Nucl Med Technol. 2018;46(2):81-86.

Apply Understanding of PK to Different Drug Formulations

Provide an Overview of Pharmacokinetics (PK) and Pharmacodynamics (PD)

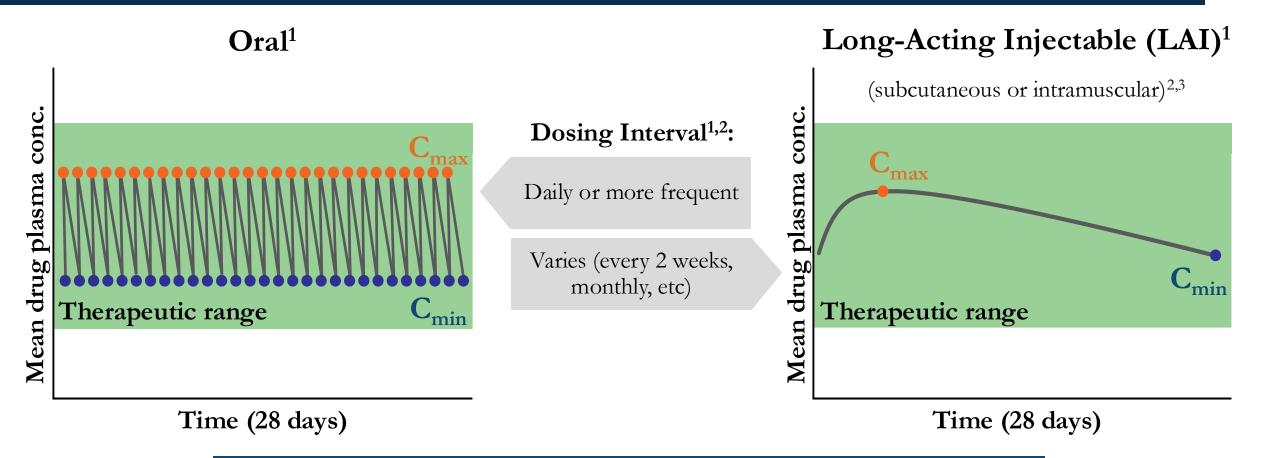
Completed


14

Describe the Differences in PK and Plasma Concentrations of Different Medication Formulations

> Oral and Long-Acting Injectable (LAI)

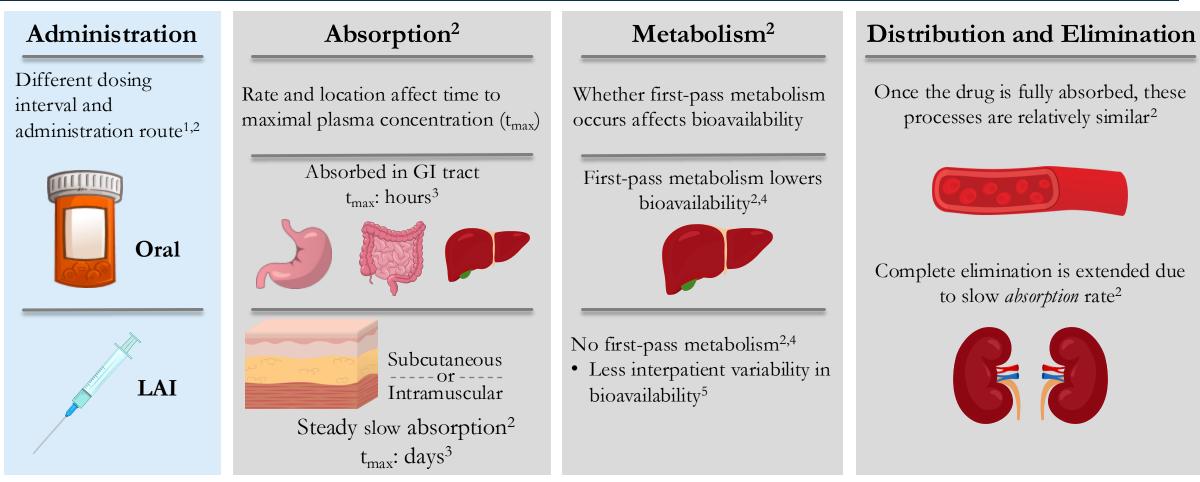
What Factors Determine Drug Effect?



1. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 2. Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 3. Currie GM. J Nucl Med Technol. 2018;46(2):81-86. 4. Alomar MJ. Saudi Pharm J. 2014;22(2):83-94.

5. Chow SC. Wiley Interdiscip Rev Comput Stat. 2014;6(4):304-312. 6. Alavijeh MS, et al. NeuroRx. 2005;2(4):554-571. 7. Roden DM, et al. Lancet. 2019;394(10197):521-532. 8. Niederberger E, et al. Int J Mol Sci. 2021;22(14):7692.
 9. Staudinger JL. Pharm Res. 2013;30(9):2171-2173. 10. Mangoni AA, et al. Br J Clin Pharmacol. 2004;57(1):6-14. 11. Levin JB, et al. CNS Drugs. 2016;30(9):819-835.

Differences in Dosing Interval and Administration Route Impact PK


How do these differences affect PK and plasma concentrations?

1. Raoufinia A, et al. Curr Med Res Opin. 2015;31(3):583-592. 2. Hard ML, et al. CNS Drugs. 2017:31(7):617-624. 3. Correll CU, et al. CNS Drugs. 2021;35(1):39-59.

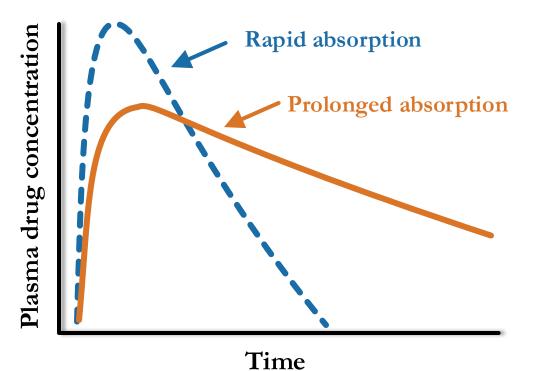
The information provided by PsychU is intended for your educational benefit only. It is not intended as, nor is it a substitute for medical care or advice or professional diagnosis. Users seeking medical advice should consult with their physician or other health care professional.

Key Differences in PK Between Oral and LAI Medications

GI, gastrointestinal tract

17

1. Hard ML, et al. CNS Drugs. 2017:31(7):617-624. 2. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 3. Sheehan JJ, et al. Innov Clin Neurosci. 2012;9(7-8):17-23.


4. Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 5. Kane JM, et al. J Clin Epidemiol. 2013;66(8 Suppl):S37-S41.

Slow Absorption Rate of LAIs Results in "Flip-flop" Kinetics

Flip-flop kinetics¹⁻³

Absorption is slower than elimination

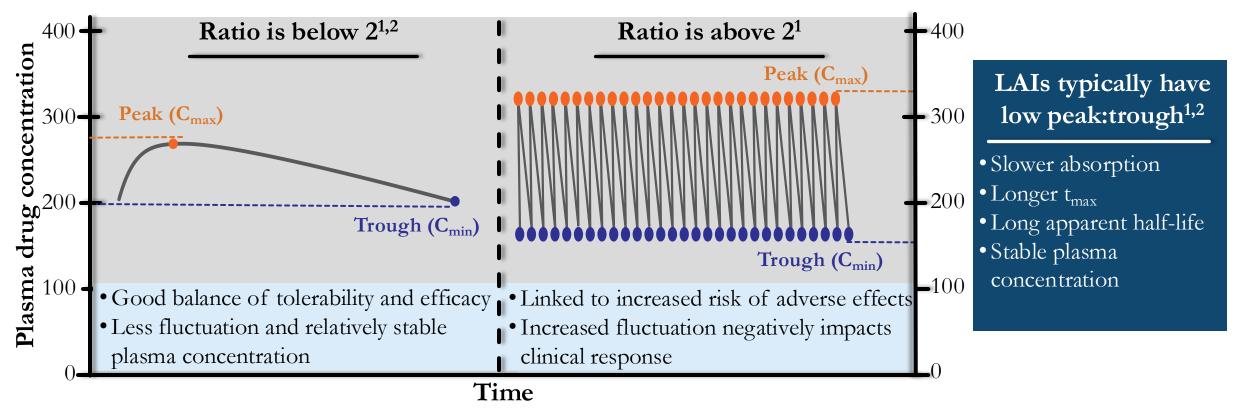
Impact and clinical relevance

- Absorption is the rate-limiting step^{1,3}
- Elimination phase is slower and reflects the absorption rate^{1,3}
- Apparent half-life²
 - Observed half-life for slow-release drugs²
 - Increased due to slow absorption^{1,2}
- Drug half-life determines time to steady state and duration of drug action^{2,4}

LAIs have flip-flop kinetics²

- Extended duration of drug plasma concentration and therapeutic effect²
- Long half-life requires less frequent doses^{4,5}

1. Zou H, et al. Front Pharmacol. 2020;11:997. 2. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 3. Yáñez JA, et al. Ther Deliv. 2011;2(5):643-672. 4. Andrade C. J Clin Psychiatry. 2022;83(4):22f14584.


5. Alavijeh MS, et al. NeuroRx. 2005;2(4):554-571.

LAI Medications Have Low Peak-to-Trough Ratio

Peak-to-trough ratio: measurement of fluctuation^{1,2}

• C_{max} (peak) divided by C_{min} (trough)

1. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 2. Sheehan JJ, et al. Innov Clin Neurosci. 2012;9(7-8):17-23.

Importance of PK and Plasma Concentrations in Clinical Setting

Describe the Differences in PK and Plasma Concentrations of Different Medication Formulations

> Oral and Long-Acting Injectable (LAI)

Completed

Explain the Importance of PK and Plasma Concentrations in the Clinical Setting

Clinical Relevance of PK

Desired drug effect is related to plasma concentration staying within therapeutic range¹

21

Understanding PK of drug formulations

- Slow absorption²⁻⁴
 - Extended drug exposure
 - Less frequent doses required

Early metabolism^{1,5}

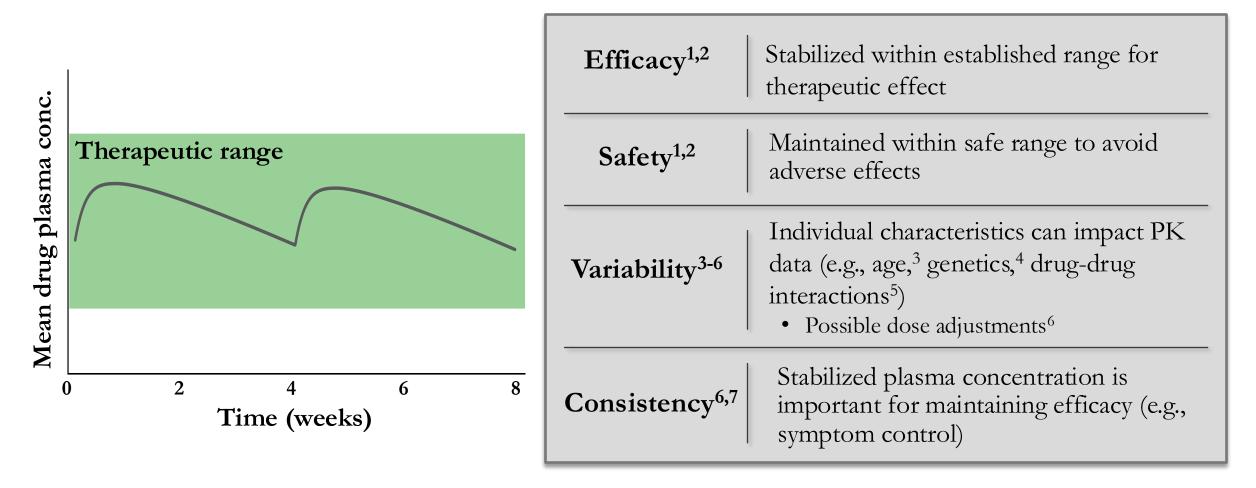
- Lower bioavailability
- Higher dose may be required

Short half-life⁴

- Short drug exposure
 - More frequent doses required

Understanding the variables (e.g., age,⁶ genetics⁷) that affect PK is important for adjusting treatment regimens

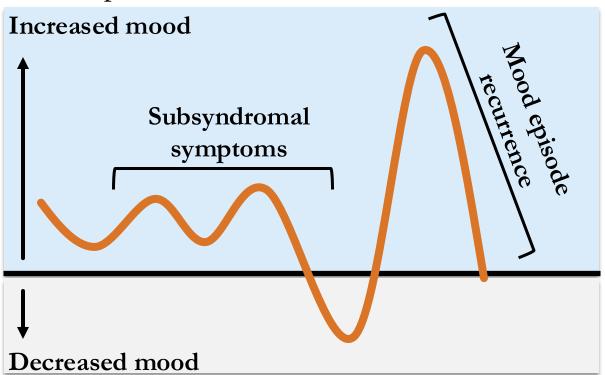
PK data of new drug formulations can be compared to previously approved drugs to support bridging of efficacy


Bioequivalence⁸
PK bridging studies⁹

1. Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 2. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 3. Alavijeh MS, et al. NeuroRx. 2005;2(4):554-571. 4. Andrade C. J Clin Psychiatry. 2022;83(4):22f14584.

- 5. Price G, et al. StatPearls. Accessed September 12, 2022. https://www.ncbi.nlm.nih.gov/books/NBK557852/ 6. Mangoni AA, et al. Br J Clin Pharmacol. 2004;57(1):6-14.
- 7. Roden DM, et al. Lancet. 2019;394(10197):521-532. 8. Chow SC. Wiley Interdiscip Rev Comput Stat. 2014;6(4):304-312. 9. Wang T, et al. Transl Breast Cancer Res. 2022;3:2.

Importance of Therapeutic Plasma Concentrations


1. Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 2. Cooney L, et al. BMC Med Res Methodol. 2017;17(1):84. 3. Mangoni AA, et al. Br J Clin Pharmacol. 2004;57(1):6-14.

4. Roden DM, et al. Lancet. 2019;394(10197):521-532. 5. Currie GM. J Nucl Med Technol. 2018;46(2):81-86. 6. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 7. Hughes DA. Br J Clin Pharmacol. 2008;65(6):871-878.

Example of Clinical Relevance: Bipolar Disorder (BD)

BD is characterized by episodes of elevated and depressed mood¹

Suggested goals of treatment²

Mood stabilization

• Returns patient with mania or depression back to stable mood

Maintenance

- Aims to prevent relapse events
- Reduces subsyndromal symptoms
- Enhances social and occupational functioning

Important factors

- Efficacy is dependent on maintaining drug plasma concentration within therapeutic window^{3,4,5}
 - Maintain stable plasma concentration⁶
- Continuous treatment⁵⁻⁷

American Psychiatric Association. 5th ed, text revision. American Psychiatric Association; 2013. 2. Geddes JR, et al. Lancet. 2013;381(9878):1672-1682. 3. Currie GM. J Nucl Med Technol. 2018;46(3):221-230.
 Cooney L, et al. BMC Med Res Methodol. 2017;17(1):84. 5. Wakamatsu A, et al. Innov Clin Neurosci. 2013;10(3):23-30. 6. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 7. Chakrabarti S. World J Psychiatry. 2016;6(4):399-409.

High Rate of Nonadherence in BD Patients

Up to 79%

Nonadherent with maintenance medicine^{1,*}

Reasons for nonadherence

- Adverse side effects²
- Complex drug regimens²
- Financial cost²
- Attitude toward medication²
- Forgetting²
- Unclear instructions^{2,3}
- Lack of illness understanding³

Consequences of nonadherence

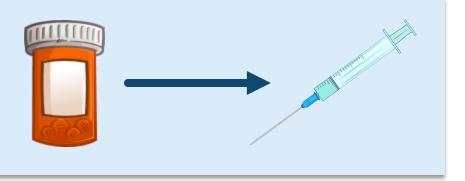
- Increased risk of:
 - Relapse²
 - Mood episode recurrence⁴
 - Number of episodes is a moderator of brain changes and associated with neurocognitive decline⁵
 - Suicidality^{4,6}
 - Subsyndromal symptoms⁷
 - Hospitalization²
- Decreased likelihood of recovery and remission^{4,6}
- Treatment costs²

Pharmacokinetics

- Missed doses typically produce reduced and prolonged trough (C_{min}) concentrations⁸
- Potential loss of drug effect⁸

*In a retrospective claims-based study, ~79% of patients with bipolar disorder took antipsychotic medications less than 75% of the time.

1. Lage MJ, et al. Ann Gen Psychiatry. 2009;8:7. 2. Jawad I, et al. Ther Adv Psychopharmacol. 2018;8(12):349-363. 3. Hajda M, et al. Neuropsychiatr Dis Treat. 2016;12:1561-1570. 4. Levin JB, et al. CNS Drugs. 2016;30(9):819-835.


5. Kapczinski NS, et al. Expert Rev Neurother. 2017;17(3):277-285. 6. Hong J, et al. Psychiatry Res. 2011;190(1):110-114. 7. Montes JM, et al. Patient Prefer Adherence. 2013;7:89-94.

8. Hughes DA. BrJ Clin Pharmacol. 2008;65(6):871-878.

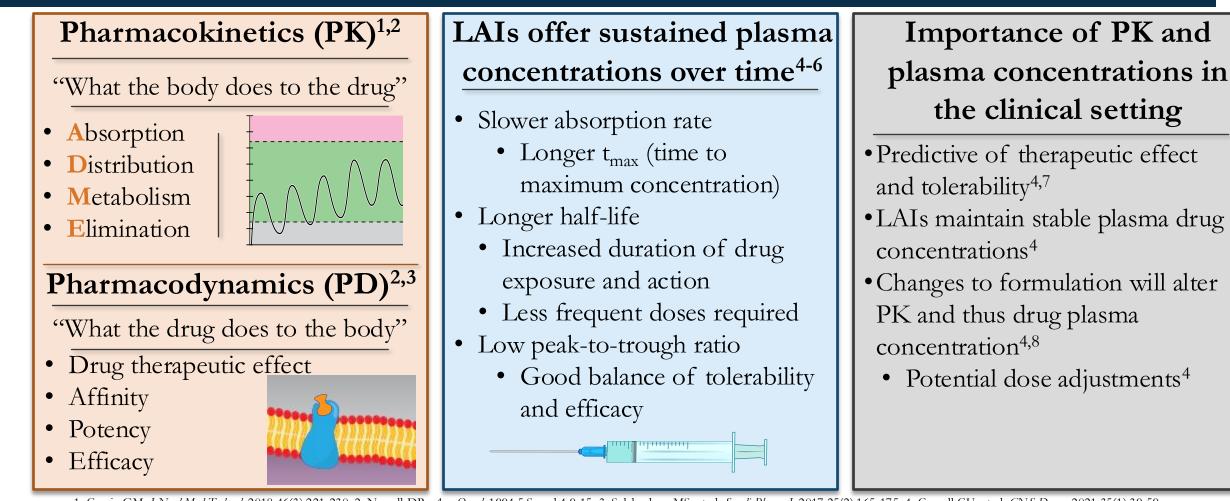
LAIs May Offer a Solution to Nonadherence: Improved PK

LAIs were developed to overcome nonadherence with oral antipsychotics¹

Improved pharmacokinetics

- LAIs ensure more consistent plasma levels via bypassing first-pass metabolism^{2,3}
- Consistent dose delivery^{1,4}
- Provide longer duration of pharmacological coverage^{3,5}
- Missed dose does not decrease plasma concentration as rapidly as oral medications⁶

Clinical impact


- Delay time to mood episode recurrence in patients with bipolar I⁷
- May help with intentional and unintentional barriers to adherence⁸
- More time to intervene after missed dose⁶

- 4. El-Mallakh PL, et al. Curr Drug Deliv. 2013;10(6):706-712. 5. Correll CU, et al. CNS Drugs. 2021;35(1):39-59. 6. Kane JM, et al. J Clin Epidemiol. 2013;66(8 Suppl):S37-S41.
- 7. Macfadden W, et al. Bipolar Disord. 2009;11(8):827-839. 8. Levin JB, et al. CNS Drugs. 2016;30(9):819-835.

^{1.} Tohen M, et al. J Clin Psychiatry. 2020;81(4):OT19046AH1. 2. Kane JM, et al. Eur Neuropsychopharmacol. 1998;8(1):55-66. 3. Keramatian K, et al. CNS Drugs. 2019;33(5):431-456.

Currie GM. J Nucl Med Technol. 2018;46(3):221-230. 2. Newell DR. Ann Oncol. 1994;5 Suppl 4:9-15. 3. Salahudeen MS, et al. Saudi Pharm J. 2017;25(2):165-175. 4. Correll CU, et al. CNS Drugs. 2021;35(1):39-59.
 Sheehan JJ, et al. Innov Clin Neurosci. 2012;9(7-8):17-23. 6. Andrade C. J Clin Psychiatry. 2022;83(4):22f14584. 7. Kang JS, et al. Korean J Intern Med. 2009;24(1):1-10.

8. Chow SC. Wiley Interdiscip Rev Comput Stat. 2014;6(4):304-312.

Plasma Concentrations, Pharmacokinetics, and Their Clinical Relevance

© 2023 Otsuka Pharmaceutical Development & Commercialization, Inc., Rockville, MD Lundbeck, LLC.

March 2023 US.PSY.D.23.00003

Back Up Slides

Pharmacokinetic (PK) Bridging Studies

PK bridging studies

- Enable extrapolation of PK data from previously approved drugs to support efficacy of changes¹
 - e.g., dosage, administration route¹
- Comparing bioavailability (AUC and C_{max}) determines bioequivalence²
 - Bioequivalence assumes same therapeutic effect is provided²
- Study design often uses models, simulations, and exposure-response analysis^{3,4}
- PK studies and models have been used to determine the efficacy (therapeutic plasma concentration) of different LAI regimens^{3,4}

Potential advantages¹

Shortened timeline

Establish efficacy

- PK studies ensure drugs will work for new population or new suggested dose
- Genetic, physiological, and environmental differences could impact efficacy

Patient impact

- Reduces duplicate trials
- Reduces cost
- Drugs will be accessible much quicker

Wang T, et al. *Transl Breast Cancer Res.* 2022;3:2. 2. Chow SC. *Wiley Interdiscip Rev Comput Stat.* 2014;6(4):304-312. 3. Wang X, et al. *Clin Pharmacol Drug Dev.* 2022;11(2):150-164.
 Hard ML, et al. *CNS Drugs.* 2017:31(7):617-624.

